この論文では、高速なベイズ更新のための新しい枠組みを提案しています。ベイズ推論は確率的推論の基盤となりますが、ポスター分布の計算が困難であり、特にエビデンス積分が問題となります。従来の手法(メトロポリス法や変分推論)はスケーラビリティや効率に限界があります。本研究では、調和解析を利用して、事前分布と尤度を適切な直交基底で表現することで、ベイズ更新則をスペクトル畳み込みに変換することを示します。ポスター分布のフーリエ係数は、事前分布と尤度係数の正規化された畳み込みとして得られることが明らかになりました。計算の実現可能性を高めるために、平滑関数に対するスペクトル切り捨て法を導入し、更新を円環畳み込みに簡素化します。この方法により、フーリエ変換を利用し、O(N log N)の計算量を実現、従来のO(N^2)に対する大幅な改善を果たします。最終的に、この研究はベイズ計算と信号処理を結び付け、広範な問題に対するリアルタイムの逐次推論の可能性を開く重要な貢献となります。